Precision Management (Aust) Pty Ltd Chemwatch: **4979-87** Version No: **5.1.13.9** Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements Chemwatch Hazard Alert Code: 3 Issue Date: **01/08/2022**Print Date: **22/08/2022**L.GHS.AUS.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking ### **Product Identifier** | Product name | Acid Alcohol | |-------------------------------|--| | Chemical Name | Not Applicable | | Synonyms | Not Available | | Proper shipping name | ETHANOL (ETHYL ALCOHOL) or ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION) | | Chemical formula | Not Applicable | | Other means of identification | Not Available | # Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Lab Laboratory reagent. # Details of the supplier of the safety data sheet | Registered company name | Precision Management (Aust) Pty Ltd | |-------------------------|---| | Address | Unit 4, 97 Fairey Road South Windsor NSW 2756 Australia | | Telephone | +61 2 8064 2333 | | Fax | +61 2 8064 7813 | | Website | Not Available | | Email | admin@labtech.com.au | # **Emergency telephone number** | Association / Organisation | Precision Management (Aust) Pty Ltd | | | |-----------------------------------|-------------------------------------|--|--| | Emergency telephone numbers | 02 8064 2333 | | | | Other emergency telephone numbers | Not Available | | | # **SECTION 2 Hazards identification** # Classification of the substance or mixture | Poisons Schedule | Not Applicable | |--------------------|---| | Classification [1] | Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Flammable Liquid Category 2 | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | # Label elements Hazard pictogram(s) Signal word Danger Issue Date: **01/08/2022**Print Date: **22/08/2022** # Hazard statement(s) | H315 | Causes skin irritation. | |------|-------------------------------------| | H319 | Causes serious eye irritation. | | H225 | Highly flammable liquid and vapour. | # Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | | | | |------|--|--|--|--|--| | P233 | Keep container tightly closed. | | | | | | P240 | Ground and bond container and receiving equipment. | | | | | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | | | | | P242 | Use non-sparking tools. | | | | | | P243 | Take action to prevent static discharges. | | | | | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | | | # Precautionary statement(s) Response | P370+P378 | In case of fire: Use alcohol resistant foam or fine spray/water fog to extinguish. | | | | | | |----------------|--|--|--|--|--|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | | | | | P302+P352 | IF ON SKIN: Wash with plenty of water. | | | | | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | | | | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | | | | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | | | | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-------------|--| | 1 70071 200 | Otore in a well vertilated place. Reep cool. | # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** # **Substances** See section below for composition of Mixtures # **Mixtures** | CAS No | %[weight] Name | | | | | |-----------|-----------------|-------------------|--|--|--| | 7647-01-0 | 1 | hydrochloric acid | | | | | 64-17-5 | 70 | ethanol | | | | | 7732-18-5 | 29 <u>water</u> | | | | | # **SECTION 4 First aid measures** # Description of first aid measures **Eye Contact** If this product comes in contact with the eyes: - ▶ Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - ▶ Seek medical attention without delay; if pain persists or recurs seek medical attention. - ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. Chemwatch: 4979-87 Page 3 of 14 Issue Date: 01/08/2022 Version No: 5.1.13.9 Print Date: 22/08/2022 Acid Alcohol If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Skin Contact Flush skin and hair with running water (and soap if available). * Seek medical attention in event of irritation. If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid Inhalation procedures. * Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. * For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and Ingestion prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. # Indication of any immediate medical attention and special treatment needed For acute or short term repeated exposures to ethanol: - Acute ingestion in non-tolerant patients usually responds to supportive care with special attention to prevention of aspiration, replacement of fluid and correction of nutritional deficiencies (magnesium, thiamine pyridoxine, Vitamins C and K). - Give 50% dextrose (50-100 ml) IV to obtunded patients following blood draw for glucose determination. Transport to hospital or doctor without delay. - Comatose patients should be treated with initial attention to airway, breathing, circulation and drugs of immediate importance (glucose, thiamine). - Decontamination is probably unnecessary more than 1 hour after a single observed ingestion. Cathartics and charcoal may be given but are probably not effective in single ingestions. - Fructose administration is contra-indicated due to side effects. # **SECTION 5 Firefighting measures** # **Extinguishing media** - Water spray or fog. - Foam. - Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. ### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - ▶ Fight fire from a safe distance, with adequate cover. - If safe, switch off electrical equipment until vapour fire hazard removed. - ▶ Use water delivered as a fine spray to control fire and cool adjacent area. - Avoid spraying water onto liquid pools. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. Fire Fighting - Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat, flame and/or oxidisers. - Vapour may travel a considerable distance to source of ignition. On combustion, may emit toxic fumes of carbon monoxide (CO). Heating may cause expansion or decomposition leading to violent rupture of containers. # Fire/Explosion Hazard Combustion products include: carbon dioxide (CO2) hydrogen chloride ohosgene other pyrolysis products typical of burning organic material. Issue Date: **01/08/2022**Print Date: **22/08/2022** **HAZCHEM** •2YE # **SECTION 6 Accidental release measures** # Personal precautions, protective equipment and emergency procedures See section 8 ### **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb small quantities with vermiculite or other absorbent material. Wipe up. Collect
residues in a flammable waste container. | |--------------|---| | Major Spills | Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Contain spill with sand, earth or vermiculite. Use only spark-free shovels and explosion proof equipment. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services. | Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** Precautions for safe handling # Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights, heat or ignition sources. When handling, DO NOT eat, drink or smoke. Vapour may ignite on pumping or pouring due to static electricity. DO NOT use plastic buckets. Earth and secure metal containers when dispensing or pouring product. Use spark-free tools when handling. - Avoid contact with incompatible materials. - * Keep containers securely sealed. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - * Observe manufacturer's storage and handling recommendations contained within this SDS. - * Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - DO NOT allow clothing wet with material to stay in contact with skin ### ______ - Store in original containers in approved flame-proof area. - No smoking, naked lights, heat or ignition sources. - **DO NOT** store in pits, depressions, basements or areas where vapours may be trapped. ### Other information - * Keep containers securely sealed. - * Store away from incompatible materials in a cool, dry well ventilated area. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. Chemwatch: 4979-87 Page **5** of **14** Issue Date: 01/08/2022 Version No: 5.1.13.9 Print Date: 22/08/2022 # Conditions for safe storage, including any incompatibilities | Suitable container | Packing as supplied by manufacturer. Plastic containers may only be used if approved for flammable liquid. Check that containers are clearly labelled and free from leaks. For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. | |-------------------------|---| | Storage incompatibility | * Avoid reaction with oxidising agents Segregate from | # **SECTION 8 Exposure controls / personal protection** strong oxidisers # **Control parameters** # Occupational Exposure Limits (OEL) ### **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|-------------------|-------------------|-----------------------|---------------|-------------------|---------------| | Australia Exposure
Standards | hydrochloric acid | Hydrogen chloride | Not Available | Not Available | 5 ppm / 7.5 mg/m3 | Not Available | | Australia Exposure
Standards | ethanol | Ethyl alcohol | 1000 ppm / 1880 mg/m3 | Not Available | Not Available | Not Available | # **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-------------------|---------------|---------------|---------------| | hydrochloric acid | Not Available | Not Available | Not Available | | hydrochloric acid | 1.8 ppm | 22 ppm | 100 ppm | | ethanol | Not Available | Not Available | 15000* ppm | | Ingredient | Original IDLH | Revised IDLH | |-------------------|---------------|---------------| | hydrochloric acid | 50 ppm | Not Available | | ethanol | 3,300 ppm | Not Available | | water | Not Available | Not Available | # MATERIAL DATA Odour Safety Factor(OSF) OSF=1.3 (hydrochloric acid) Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded. Odour Safety Factor (OSF) is determined to fall into either Class C, D or E. The Odour Safety Factor (OSF) is defined as: OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm Classification into classes follows: ClassOSF Description 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities - 26-550As "A" for 50-90% of persons being distracted - С 1-26 As "A" for less than 50% of persons being distracted - D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached - <0.18 As "D" for less than 10% of persons aware of being tested Е Issue Date: **01/08/2022** Print Date: **22/08/2022** # **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. ### Type of Contaminant: Air Speed: 0.25-0.5 m/s solvent, vapours, degreasing etc., evaporating from tank (in still air). (50-100 f/min.) 0.5-1 m/s aerosols, fumes from pouring operations,
intermittent container filling, low speed conveyer transfers, welding, (100-200 spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) f/min.) 1-2.5 m/s direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (200-500 (active generation into zone of rapid air motion) f/min.) Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Personal protection Appropriate engineering controls # Eye and face protection - Safety glasses with side shields. - Chemical goggles - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] # Skin protection # See Hand protection below ### Hands/feet protection - Wear chemical protective gloves, e.g. PVC. - * Wear safety footwear or safety gumboots, e.g. Rubber # **Body protection** ### See Other protection below # Other protection - Overalls. PVC Apron. - PVC protective suit may be required if exposure severe. - Lyewash unit. - * Ensure there is ready access to a safety shower. Version No: 5.1.13.9 Acid Alcohol Acid Alcollol ### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: ### "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: Acid Alcohol | Material | СРІ | |-------------------|-----| | BUTYL | A | | NEOPRENE | A | | BUTYL/NEOPRENE | С | | HYPALON | С | | NAT+NEOPR+NITRILE | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE/NATURAL | С | | NITRILE | С | | NITRILE+PVC | С | | PE/EVAL/PE | С | | PVA | С | | PVC | С | | SARANEX-23 | С | | VITON | С | | VITON/NEOPRENE | С | ^{*} CPI - Chemwatch Performance Index A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. Type AB-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Issue Date: 01/08/2022 Print Date: 22/08/2022 Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |------------------------------------|-------------------------|-------------------------|---------------------------| | up to 5 x ES | Air-line* | AB-2 P2 | AB-PAPR-2 P2 | | up to 10 x ES | - | AB-3 P2 | - | | 10+ x ES | - | Air-line** | - | ^{* -} Continuous Flow; ** - Continuous-flow or positive pressure demand ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) # **SECTION 9 Physical and chemical properties** # Information on basic physical and chemical properties | Appearance | Colourless, highly flammable liquid with alcohol odour; mixes with water. | | | |--|---|--|----------------| | | | | | | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient
n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm
or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | 100 | Page 8 of 14 **Acid Alcohol** Issue Date: 01/08/2022 Print Date: 22/08/2022 | | | | I. | |--------------------------|---------------|----------------------|---------------| | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (%) | Not Available | | Vanour density (Air = 1) | Not Available | VOC a/I | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|---------------------------------| | Chemical stability | Segregate from strong oxidisers | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | # **SECTION 11 Toxicological information** | Information on toxicolog | ical effects | | | |--------------------------|--|---|--| | Inhaled | Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Limited evidence or practical experience suggests
that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. The most common signs of inhalation overexposure to ethanol, in animals, include ataxia, incoordination and drowsiness for those surviving narcosis. The narcotic dose for rats, after 2 hours of exposure, is 19260 ppm. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination | | | | | - | of the material may be damaging to the health of the individual. may produce nausea, vomiting, gastrointestinal bleeding, abdominal pain and diarrhoea. Systemic effects: Effects: | | | | <1.5 g/l | Mild: Impaired visual acuity, coordination and reaction time, emotional lability | | | Ingestion | 1.5-3.0 g/l | Moderate: Slurred speech, confusion, ataxia, emotional lability, perceptual and sensation disturbances possible blackout spells, and incoordination with impaired objective performance in standardised tests. Possible diplopia, flushing, tachycardia, sweating and incontinence. Bradypnoea may occur early and tachypnoea may develop in cases of metabollic acidosis, hypoglycaemia and hypokalaemia. CNS depression may progress to coma. | | | | Severe: Cold clammy skin, hypothermia and hypotension. Atrial fibrillation and atrioventricular block have been reported. Respiratory depression may occur, respiratory failure may follow serious intoxication, aspiration of vomitus may result in pneumonitis and pulmonary oedema. Convulsions due to severe hypoglycaemia may also occur Acute hepatitis may develop. | | | | | The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material eith produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hour such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis | | | Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to **Skin Contact** blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Eye Chronic Acid Alcohol Page 9 of 14 Issue Date: 01/08/2022 Print Date: 22/08/2022 The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eve damage/ulceration may occur. Direct contact of the eye with ethanol may cause immediate stinging and burning with reflex closure of the lid and tearing, transient injury of the corneal epithelium and hyperaemia of the conjunctiva. Foreign-body type discomfort may persist for up to 2 days but healing is usually spontaneous and complete. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inade quate data for making a satisfactory assessment. Long-term exposure to ethanol may result in progressive liver damage with fibrosis or may exacerbate liver injury caused by other agents. Repeated ingestion of ethanol by pregnant women may adversely affect the central nervous system of the developing foetus, producing effects collectively described as foetal alcohol syndrome. These include mental and physical retardation, learning disturbances, motor and language deficiency, behavioural disorders and reduced head size. Consumption of ethanol (in alcoholic beverages) may be linked to the development of Type I hypersensitivities in a small number of individuals. Symptoms, which may appear immediately after consumption, include conjunctivitis, angioedema, dyspnoea, and urticarial rashes. The causative agent may be acetic acid, a metabolite (1). (1) Boehncke W.H., & H.Gall, Clinical & Experimental Allergy, 26, 1089-1091, 1996 | Acid Alcohol | TOXICITY | IRRITATION | |-------------------|---|--| | Acid Alcohol | Not Available | Not Available | | | TOXICITY | IRRITATION | | | dermal (mouse) LD50: 1449 mg/kg ^[2] | Eye (rabbit): 5mg/30s - mild | | hydrochloric acid | Oral(Rat) LD50; 700 mg/kg ^[2] | Eye: adverse effect observed (irritating) ^[1] | | | | Skin: adverse effect observed (corrosive) ^[1] | | | | Skin: adverse effect observed (irritating) ^[1] | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: 17100 mg/kg ^[1] | Eye (rabbit): 500 mg SEVERE | | | _Inhalation(Mouse) LC50; 39 mg/l4h ^[2] | Eye (rabbit):100mg/24hr-moderate | | ethanol | Oral(Rat) LD50; >7692 mg/kg ^[1] | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit):20 mg/24hr-moderate | | | | Skin (rabbit):400 mg (open)-mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | water | Oral(Rat) LD50; >90000 mg/kg ^[2] | Not Available | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances # HYDROCHLORIC ACID Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a nonallergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a nonatopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in Chemwatch: 4979-87 Version No: 5.1.13.9 Acid Alcohol Issue Date: 01/08/2022 Print Date: 22/08/2022 nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. for acid mists, aerosols, vapours Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airways from direct exposure to inhaled acidic mists, just as mucous plays an important
role in protecting the gastric epithelium from its auto-secreted hydrochloric acid. In considering whether pH itself induces genotoxic events in vivo in the respiratory system, comparison should be made with the human stomach, in which gastric juice may be at pH 1-2 under fasting or nocturnal conditions, and with the human urinary bladder, in which the pH of urine can range from <5 to > 7 and normally averages 6.2. Furthermore, exposures to low pH in vivo differ from exposures in vitro in that, in vivo, only a portion of the cell surface is subjected to the adverse conditions, so that perturbation of intracellular homeostasis may be maintained more readily than in vitro. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. # **ETHANOL** The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. # **HYDROCHLORIC ACID &** WATER No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ~ | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Leaend: X - Data either not available or does not fill the criteria for classification Data available to make classification # **SECTION 12 Ecological information** # Tovicity | Acid Alcohol | Endpoint | Test Duration (hr) | Species | Value | Source | |-------------------|------------------|--------------------|-------------------------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | hydrochloric acid | EC50(ECx) | 9.33h | Fish | 0.51mg/L | 4 | | | LC50 | 96h | Fish | 334.734mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50(ECx) | 96h | Algae or other aquatic plants | <0.001mg/L | 4 | | ethanol | EC50 | 72h | Algae or other aquatic plants | 275mg/l | 2 | | Galanoi | LC50 | 96h | Fish | >100mg/l | 2 | | | EC50 | 48h | Crustacea | >79mg/L | 4 | | | EC50 | 96h | Algae or other aquatic plants | <0.001mg/L | 4 | | water | Endpoint | Test Duration (hr) | Species | Value | Source | | | Not | Not Available | Not Available | Not | Not | | | Available | . rot / trainable | 1101711allabio | Available | Available | ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Issue Date: **01/08/2022**Print Date: **22/08/2022** # Persistence and degradability | Ingredient | Persistence: Water/Soil Persistence: Air | | |-------------------|--|-----------------------------| | hydrochloric acid | LOW | LOW | | ethanol | LOW (Half-life = 2.17 days) | LOW (Half-life = 5.08 days) | | water | LOW | LOW | # **Bioaccumulative potential** | Ingredient | Bioaccumulation | | |-------------------|-----------------------|--| | hydrochloric acid | LOW (LogKOW = 0.5392) | | | ethanol | LOW (LogKOW = -0.31) | | # Mobility in soil | Ingredient | Mobility | | |-------------------|------------------|--| | hydrochloric acid | LOW (KOC = 14.3) | | | ethanol | HIGH (KOC = 1) | | # **SECTION 13 Disposal considerations** ### Waste treatment methods Product / Packaging disposal - Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible. - Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain - label warnings and SDS and observe all notices pertaining to the product. # **SECTION 14 Transport information** # **Labels Required** # Land transport (ADG) | UN number | 1170 | | | |------------------------------|--|--|--| | UN proper shipping name | ETHANOL (ETHYL ALCOHOL) or ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION) | | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | | Packing group | II . | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | Special provisions 144 Limited quantity 1 L | | | # Air transport (ICAO-IATA / DGR) | UN number | 1170 | | |-------------------------|------------------------------|--| | UN proper shipping name | Ethanol or Ethanol. solution | | Issue Date: **01/08/2022** Print Date: **22/08/2022** | Transport hazard class(es) | ICAO/IATA Class | 3 | | |------------------------------|---|----------------|-------------| | | ICAO / IATA Subrisk | Not Applicable | | | | ERG Code | 3L | | | Packing group | II | | | | Environmental hazard | Not Applicable | | | | | Special provisions | | A3 A58 A180 | | | Cargo Only Packing Instructions | | 364 | | Special precautions for user | Cargo Only Maximum Qty / Pack | | 60 L | | | Passenger and Cargo Packing Instructions | | 353 | | | Passenger and Cargo Maximum Qty / Pack | | 5 L | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y341 | | | Passenger and Cargo Limited Maximum Qty / Pack | | 1 L | # Sea transport (IMDG-Code / GGVSee) | UN number | 1170 | | | |------------------------------|--|-------------------------|--| | UN proper shipping name | ETHANOL (ETHYL ALCOHOL) or ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION) | | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk Not Applicable | | | | Packing group | ІІ | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | EMS Number Special provisions Limited Quantities | F-E , S-D
144
1 L | | # Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-------------------|---------------| | hydrochloric acid | Not Available | | ethanol | Not Available | | water | Not Available | # Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |-------------------|---------------| | hydrochloric acid | Not Available | | ethanol | Not Available | | water | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture # hydrochloric acid is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5 Australia Standard for the Uniform Scheduling of Medicines and Poisons Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs ethanol is found on the following regulatory lists (SUSMP) - Schedule 6 Issue Date: **01/08/2022** Print Date: **22/08/2022** Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) water is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) # **National Inventory Status** | National Inventory | Status | | |--|--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (hydrochloric acid; ethanol; water) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | # **SECTION 16 Other information** | Revision Date | 01/11/2019 | |---------------|------------| | Initial Date | 24/03/2004 | # **SDS Version Summary** | Version | Date of Update | Sections Updated | |----------|----------------|--| | 5.1.1.1 | 01/11/2019 | One-off system update. NOTE: This may or may not change the GHS classification | | 5.1.2.1 | 26/04/2021 | Regulation Change | | 5.1.3.1 | 03/05/2021 | Regulation Change | | 5.1.4.1 | 06/05/2021 | Regulation Change | | 5.1.5.1 | 10/05/2021 | Regulation Change | | 5.1.5.2 | 30/05/2021 | Template Change | | 5.1.5.3 | 04/06/2021 | Template Change | | 5.1.5.4 | 05/06/2021 | Template Change | | 5.1.6.4 | 07/06/2021 | Regulation Change | | 5.1.6.5 | 09/06/2021 | Template Change | | 5.1.6.6 | 11/06/2021 | Template Change | | 5.1.6.7 | 15/06/2021 | Template Change | | 5.1.7.7 | 17/06/2021 | Regulation Change | | 5.1.8.7 |
21/06/2021 | Regulation Change | | 5.1.8.8 | 05/07/2021 | Template Change | | 5.1.9.8 | 14/07/2021 | Regulation Change | | 5.1.10.8 | 19/07/2021 | Regulation Change | | 5.1.10.9 | 01/08/2021 | Template Change | | 5.1.11.9 | 02/08/2021 | Regulation Change | Chemwatch: **4979-87**Page **14** of **14**Version No: **5.1.13.9** ### **Acid Alcohol** | Version | Date of Update | Sections Updated | |----------|----------------|-------------------| | 5.1.12.9 | 05/08/2021 | Regulation Change | | 5.1.13.9 | 22/08/2022 | Regulation Change | ### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ### **Definitions and abbreviations** PC—TWA: Permissible Concentration-Time Weighted Average PC—STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. Issue Date: 01/08/2022 Print Date: 22/08/2022